YEAR 7 MATHEMATICS SCHEME OF WORK 2021

PROCESS STRAND - PROBLEM SOLVING

PROCESS STRAND - PROBLEM SOLVING	
Formulating	- Identify the information needed to solve a problem, classifying and sorting it where necessary.
	- Represent problems mathematically, making appropriate use of diagrams, words, symbols, tables and graphs.
	- Use and apply mathematical knowledge, methods and techniques across different mathematical domains, including solving problems in unfamiliar contexts.
	- Break a complex calculation into simpler steps, choosing and using appropriate and efficient operations, methods and resources.
Analysing \& reasoning	- Use appropriate mathematical techniques and notation to explain how to solve a problem.
	- Check calculations, methods and mathematical arguments.
	- Extend the answer to a problem to a wider context by generalising. Extend problems by asking 'What if...?' and altering some of the original variables or constraints.
Interpreting \& justifying	- Decide whether an answer is reasonable.
	- Interpret answers referring to the context of the original problem.
	- Justify answers and conclusions, orally and in writing.
	- Explore whether statements are always true, sometimes true or never true.
	- Recognise that some statements or conclusions maybe misleading or uncertain. Understand the importance of a counter-example in disproving something is always true.

1. NUMBERS, OPERATIONS \& ALGEBRA (21 WEEKS)

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.1 PROPERTIES OF NUMBERS	Students should be able to:		2
1.1.1 Multiples, Factors, Common Factors, LCM, HCF, Primes, Test of Divisibility, Index Notation, Prime Factors, Squares \& Square Root, Cubes \& Cube Root	a) Recognise and use multiples, factors, common factors, lowest common multiples, highest common factors, primes (less than 100) and tests of divisibility when solving problems.	- Find factors and multiples of a given number. - Understand the relationship between multiples and factors. Examples: a) What are the factors of 12 ? $\begin{aligned} & 1 \times 12=12 \\ & 2 \times 6=12 \\ & 3 \times 4=12 \end{aligned}$ $1,2,3,4,6$ and 12 are the factors of 12. Correspondingly, $\mathbf{1 2}$ is a multiple of $1,2,3,4,6$ and 12. b) List down the first three multiples of 6? $\begin{aligned} & 1 \times 6=6 \\ & 2 \times 6=12 \\ & 3 \times 6=18 \end{aligned}$ The first three multiples of 6 are 6, 12 and 18. Correspondingly, 1 and 6 are factors of 6; 2 and 6 are factors of 12; 3 and 6 are factors of 18. c) List down the first four multiples of 7 . d) What are the common factors of 20 and 30 ? e) List down the first two common multiples of 2 and 3 . - Find lowest common multiples (LCM) and highest common factors (HCF) of a given number. - Solve word problems involving LCM and HCF. Examples:	

		a) Rafa has 45 cookies. She wants to pack an equal number of cookies into different bags. In how many ways can she pack the cookies if she must use at least two bags? b) Three bus services (A, B and C) leave the bus station together at 9.00 a.m. Service A leaves the station every 10 minutes, Service B leaves the station every 15 minutes and Service C every 25 minutes. At what time will the 3 services next leave the station together? c) A choir at your school wants to divide the choir into smaller groups. There are 24 sopranos, 60 altos and 36 tenors. Each group will have the same number of each type of voice. (a) What is the greatest number of groups that can be formed? (b) How many sopranos, altos and tenors will be in each group? d) Three bus services (A, B and C) leave the bus station together at 9.00 a.m. Service A leaves the station every 10 minutes, Service B leaves the station every 15 minutes and Service C every 25 minutes. At what time will the 3 services next leave the station together? e) The LCM of two numbers is 60 . One of the numbers is 12 . Find the other number. Find as many answers as you can. - Recall prime numbers (less than 100). Examples: 1. Is 5 a prime number? Explain your answer. 2. Is 80 a prime or composite? Explain your answer. 3. Find all the prime numbers between 40 and 60. 4. How many prime numbers, less than 50 , are odd numbers? 5. List down all the prime numbers which are factors of a) 30 b) 36 - Solve problems involving divisibility rules. Examples: 1. Is 72 divisible by 2 ? 2. Is 53 divisible by 3 ?

	b) Understand, read and write index (exponent, power) notation for a^{n} where n is a positive integer. Understand, read and write index notation for positive integer powers of 10. [SPN21 MATHEMATICS Y8 Pages 79-80] c) Express 2-digit whole numbers as prime factors.	3. Is 180 is divisible by $2,3,4,5,9$ and 10 ? - Read and write index notation for a^{n} where n is a positive integer and for positive integer powers of 10 . base \qquad a^{n} \qquad index - Emphasize index $=$ exponent $=$ power. Examples: 1. Write down the expression in index form. $5 \times 5 \times 5$ 2. Find the missing base. \qquad ${ }^{3}=27$ 3. Write down the expression in index form. $\begin{aligned} & 41 \cdot 41 \cdot 70 \cdot 70 \cdot 70 \\ = & 41-\cdot 70- \end{aligned}$ 4. Fill in the missing exponent (power/index). $10-=10,000$ 5. Write 4×4 in index form using a) 4 as the base b) 2 as the base 6. Write each of the following in index form using 3 as the base. a) 9 b) 81 - Express 2-digit whole numbers as prime factors. Example: List down 5 numbers which has only two prime factors 3 and 5. - Write the prime factorisation of a given number in terms of index notation. Example:	

	d) Understand square numbers and positive square roots of positive integers and recognise patterns in their sequence. [SPN21 MATHEMATICS Y7 Pages 12-14, 86] e) Understand cube numbers and cube roots of positive integers and recognise patterns in their sequence. [SPN21 MATHEMATICS Y7 Pages 15-16, 86]	Express 72 as prime factors. Leave your answer in index notation. - Review squares and square roots. Examples: Calculate mentally: a) $4^{2}+9$ b) $(4+3)^{2}$ c) $5^{2}-7$ d) $\sqrt{9+7)}$ e) $\sqrt{\left(40-2^{2}\right)}$ f) What is the fourth square number? - Relate squares and square roots with Area and Perimeter of Square problems. Examples: 1. Find the length of the side of a square with an area of $36 \mathrm{~cm}^{2}$ 2. The area of a square is $25 \mathrm{~m}^{2}$. Find its perimeter. - Recognise the sequence patterns in squares and square roots. Examples: Complete the number sequence: 1. $1,4,9$, \qquad , - 2. 144 , \qquad \qquad , 81,64 - Review cubes and cube roots. Examples: 1. $1^{3}+3^{3}$ 2. $\sqrt[3]{9 \times 3}$ - Recognise the sequence patterns in cube and cube root. Examples: Complete the number sequence: 1. $1,8,27$, \qquad , -_ 2. 343 , \qquad \qquad , 64, 27 - Relate cubes and cube root with Volume of Cube problems.	

| | | Examples:
 1. Find the length of the side of a cube with volume of $27 \mathrm{~cm}^{3}$.
 2. Find the area of each face of a cube whose volume is $125 \mathrm{~cm}^{3}$. | |
| :--- | :--- | :--- | :--- | :--- |

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.2 OPERATIONS WITH INTEGERS	Students should be able to:		4
1.2.1 Whole Number Bonds, Multiplication and Division of Whole Numbers, Doubles and Corresponding Halves of Whole Numbers.	a) Consolidate the rapid recall of number facts including: - complements (number bonds) for whole numbers to 100; - multiplication and associated division facts up to 12×12; - doubles of whole numbers up to 100 and corresponding halves. Consolidate mental methods for calculating with whole numbers, including multiplication and division by 10,100 and 1000. [SPN21 MATHEMATICS Y7 Chapter titles involved: Whole numbers and operations; Integers and operations]	- Addition and subtraction facts Know with rapid recall addition and subtraction facts to 20. - Complements (number bonds) Derive quickly: whole-number complements in 100 and 50, Example: $100=63+37, \quad 50=-17+67$ 33 and what number makes 100 ? $33+67=100 \text { or } 100-\mathbf{3 3}=67$ What numbers make 100 ? - Multiplication and division facts Know with rapid recall multiplication facts up to 12×12 (and squares to at least 12×12). Derive quickly the associated division facts, e.g. $56 \div 7, \sqrt{81}$. - Doubles and halves Derive quickly: doubles of two digit whole numbers up to 100, and all the corresponding halves. Example: Double of 25 $25+25=50 \text { or } 2 \times 25=50$ Correspondingly, half of 50? $50 \div 2=25$	

1.2.3 Word Problems	e) Choose when it is appropriate and when it is not appropriate to use a calculator to carry out calculations. Use a calculator efficiently, checking answers appropriately. Remark: Method to use calculator is covered for topics which require its use. A calculator logo is placed next to the question number to indicate the use of calculator. [SPN21 MATHEMATICS Y7 Pages 51-55, 62] f) Solve one- and two-step word problems involving calculations with whole numbers choosing appropriately: - the operation(s) to use; - whether to use mental, written or calculator method(s); - whether the answer needs to be rounded due to the context of the problem. [SPN21 MATHEMATICS Y7 Chapter titles involved: Whole numbers and operations; Integers and operations;	- Decide when it is appropriate and when it is not appropriate to use a calculator to carry out calculations. - The calculator is a tool to do calculations. The human brain and pencil and paper are also tools. Students should be taught when to use a calculator and when mental computing (or even paper \& pencil) are more effective or appropriate. Choosing the right 'tool' is part of an effective problem-solving process. - It is very important that students learn how to estimate the result before doing the calculation. A student must not learn to rely on the calculator without checking that the answer is reasonable. - A calculator should not be used to try out randomly all possible operations and to check which one produces the right answer. It is crucial that students learn and understand the different mathematical operations so they know WHEN to use which one and this is true whether the actual calculation is done mentally, on paper, or with a calculator. - Solve one- and two-step word problems involving calculations with whole numbers. Examples: 1. How many books costing $\$ 6$ each can be bought for $\$ 56$? What operation (s) do we use? Solve mentally, written or use a calculator? Does the answer need to be rounded off? 3. A cinema sold 125712 tickets in a year. The price of a ticket is \$6. a) Write down 125712 correct to the nearest thousand. b) Use your answer to (a) and the information above to estimate the total amount earned by the cinema from tickets sales in a year. 4. A company has 897 boxes to move by van. The van can carry 23 boxes at a time. How many trips must the van make to move all the boxes?	

1.2.4 Order of Operations	Approximation (pages 73-74); Percentage] Know and use the order of operations, including brackets, to carry out more calculations involving the four operations. [SPN21 MATHEMATICS Y7 Pages 17-25]	- Know and use the order of operations to evaluate expressions: 1. Brackets 2. Powers or indices 3. Multiplication \& Division (from left to right) 4. Addition $\&$ Subtraction (from left to right) - Examples: 1. Find mentally or use jottings to find the value of: a) $20 \div 5+10=14$ b) $5+20 \div 10=7$ c) $\frac{200}{4 \times 5}=10$ d) $\left(3^{3}-5^{2}\right)^{2}$ 2. Evaluate: a. $289 \div 3+98-7 \times 11$ b. $\sqrt{289}+15 \div 3-\sqrt[3]{729} \times 5$ c. $\quad 98-(132+84) \div 12$ 3. Evaluate $\frac{1116}{(65-34) \times 12}$ using a calculator. 4. Insert operation signs (i.e.,,$+- \times, \div$) and brackets i.e. (), whenever necessary to make the following sentence correct. $352=21$ - Number Sense Quizzes (No calculators!) 1. A number N is multiplied by 30 and divided by 5 . The result is 6 . Find the value of N. 2. True or false? a) 6^{3} is smaller than 3^{6}. b) $12^{2}+3^{2}=15^{2}$. c) $3(52+3 \times 3)=3 \times 52+3 \times 3$ (T/F)

1.2.5 Positive \& Negative Integers	g) Consolidate understanding of positive and negative integers in context. [SPN21 MATHEMATICS Y7 Pages 27-33]	- Use the number line to introduce the idea of positive and negative integers. - Negative integers are integers LESS than zero. - Positive integers are integers GREATER than zero. - ZERO is neither negative nor positive integer. We call it the origin. Examples: 1. Find the missing numbers: 2. - Use integers in daily life. - Explain the significance of negative numbers by providing daily examples: Ground Floor (0), Basement Floor (-1), $0^{\circ} \mathrm{C},-6^{\circ} \mathrm{C}, 4$ meters below sea-level, etc. Examples: Write an integer to describe each situation: 1. A temperature of 10 degrees below zero. 2. 20 feet below sea level. 3. A $\$ 100$ withdrawal. 4. Lost 10 points. 5. $\$ 50$ deposit. 6. A loss of $\$ 30$. 7. $\$ 60$ price increase. 8. $\$ 10$ off the original price. 9. 12 centimeters longer. 10. Ascend 100 meters. 11. Descend 200 meters. 12. 7 students move away to a different school.

1.2.6 Addition, Subtraction \& Multiplication of Integers	h) Add and subtract positive and negative integers, including through using number lines and other models. Multiply positive and negative integers by a positive integer. Remark: Multiplying two negative integers is not included. [SPN21 MATHEMATICS Y7 Pages 34-41, 44] (Link to 1.6, 1.7 and 1.8)	- Explain how the sum of two integers is obtained on the number line. - Explain how the difference of two integers (especially one positive and the other negative) is obtained on the number line. Apply the idea to finding, e.g., the difference between two temperatures, $4^{\circ} \mathrm{C}$ and $-6^{\circ} \mathrm{C}$. - Demonstrate addition, subtraction, multiplication positive and (or) negative integer by a positive integer on the number line and other models. - Explore the rules for addition \& subtraction and involving 2 integers using the calculator or other manipulative. - Multiply positive and negative integers by a positive integer. , e.g., $-3 \times 2,2 \times(-6)$ - Establish and use the basic rules for computing a pair of integers with a single operation $(+,-, x)$, e.g., $4 \times(-3)=-12$, without the use of the calculator. Examples: 1. Evaluate $-23+(-8)-(-10)$, 2. Find the difference between two temperatures, $4^{\circ} \mathrm{C}$ and $-6^{\circ} \mathrm{C}$. 3. Write down the missing values. a) \qquad $+3=-1$ b) $8-$ \qquad $=6$ c) $\times-2=-10$ d) $4 x$ \qquad $=-12$ 4. What are the two integers, when added together, will give -4 as the answer? Are there any other possible pairs of integers which when added, will give the same answer? 5. Mt. Everest, the highest elevation in the world, is 8850 meters above sea level. The Dead Sea, the lowest elevation, is 413 meters below sea level. What is the difference between these two elevations? 6. A submarine hovers at 340 meters below sea level. If it descends 120 meters and then ascends 290 meters, what is its new position? 7. Chen has overdrawn his checking account by $\$ 27$. His bank charged him $\$ 15$ for an overdraft fee. Then he quickly deposited $\$ 100$. What is his current balance?

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.3 OPERATIONS WITH FRACTIONS AND DECIMALS	Students should be able to:		2
1.3.1 Decimal Number Bonds, Double \& Corresponding Halves, Multiplication \& Division of Decimals	a) Consolidate the rapid recall of number facts including: - complements (number bonds) for decimals with one and two decimal places to 1 ; - doubles of 2-digit decimal numbers and corresponding halves. Consolidate mental methods for calculating with decimals, including multiplication and division by 10, 100 and 1000. [SPN21 MATHEMATICS Y7 56-65]	- Complements (number bonds) Derive quickly: decimal complements in 1 (one and two decimal places), Examples: $1=0.8+0.2, \quad 1=0.41+0.59$ 0.3 and what number makes 1 ? $0.3+0.7=1 \text { or } 1-0.3=0.7$ - Doubles and halves Derive quickly: doubles of two digit decimal numbers, Examples: $3.8 \times 2,0.76 \times 2$ and all the corresponding halves. Example: What is double of 2.2? $2.2+2.2=4.4$ or $2 \times 2.2=4.4$ Correspondingly, half of $4.4 ? \mathbf{4 . 4} \div \mathbf{2}=\mathbf{2 . 2}$ - Use knowledge of place value to multiply and divide mentally decimal numbers by 10,100 and 1000 , or by a small multiple of 10 , e.g. $4.3 \times 100,1.6 \times 20=1.6 \times 10 \times 2=16 \times 2=32$, \qquad $\div 100=4.7$ - Use knowledge of multiplication facts and place value to multiply mentally. Examples: a) $0.2 \times 8=10 \times 0.2 \times 8=2 \times 8=16 \div 10=1.6$ b) 0.04×9 c) 8×0.5 d) 7×0.03	

1.3.2 Estimation \& Approximation	b) Make and justify estimates of calculations involving decimals. Remark: The concept of significant figures and rounding off to a specified number of significant figures are introduced in Year 8. [SPN21 MATHEMATICS Y7 Pages 79-81] c) Understand and use place value to solve problems involving decimals, including problems that require numbers to be rounded to the nearest $0.01,0.1$, etc. Understand the concept of 'decimal places' and use it to round decimals to up to three decimal places when solving	e) $\quad \ldots x 0.2=10$ f) $80 x+=8$ g) The decimal point is missing. Put it in. i. $\quad 15.25 \times 4.6=7015$ ii. $234.5 \times 0.52=12194$ - Examples: 1. Find an estimate of: a) 2.13×5.71 b) $6641 \div 21.3$ c) $(42.4 \times \sqrt{ } 51) \div 21.3$ 2. One kilogram of fish was sold for $\$ 4.95$. Estimate how many kilograms of fish you could buy with $\$ 20$. - Number Sense Quizzes (No calculators!) Without working out the exact answers, tell True or False: a) $(230 \times 0.996)>230$ b) $2.6-\frac{1}{2}>2$ c) $3 / 4 \times 62 \div 0.89$ is less than 45 d) $0.125 \times 8200<1000$ e) $\sqrt{ } 2500<15$ Examples: 1. Express the following decimals correct to 2 decimal places. a) 14.055 b) 2.887 c) 0.27642 3. Round off 1.2468 to: a) the nearest tenth, b) the nearest hundredth,

1.3.4 Addition \& Subtraction of Fractions	f) Check answers to calculations involving decimals by using: - approximations, to verify whether the answer is the right order of magnitude; - inverse operations and working the problem backwards; - a different method. [Calculator can be used to check calculations] g) Add and subtract fractions and mixed numbers, mentally or with jottings when appropriate.	- Check answers by a) Approximation by rounding to check whether the answer is the right order of magnitude. Example: A book costing $\$ 26.40$ is estimated to $\$ 27$. It can't be $\$ 25$ or $\$ 2$. b) Check answers by doing inverse operations. Examples: i. Check $15.9 \times 3.2=50.88$ with $50.88 \div 15.9$ ii. Check $99.78 \div 5.3=18.8264151$ with 18.8264151×5.3 c) A different method Example: $\quad 25.2 \div 4.9$ Estimated answer $25 \div 5=5$ or $25.5 \div 5=5.1$, Which one is the better estimate? Exact answer $25.2 \div 4.9=5.14$ The estimated answer is close to the exact answer, therefore the calculation is likely correct. - Mental arithmetic 1. What is the sum of 30 tens and 4 tenths? 2. What is the value of 5 tenths less than twenty and sixteen hundredths? - Add and subtract simple fractions and mixed numbers, mentally or with jottings when appropriate. Examples: 1.	

1.3.5 Multiplication \& Division of Fractions	h) Multiply and divide fractions, interpreting division as a multiplicative inverse. [SPN21 MATHEMATICS Y7 Pages 48-55]	2. At a pie-eating contest, Ayden got through $\frac{2}{3}$ of a pie before time was called. Malek finished just $\frac{7}{12}$ of a pie. How much more pie did Ayden eat than Malek? 3. My mother made 6 bowls of pasta. She puts extra cheese on 3 of them. What fraction of the bowls did not have extra cheese? 4. Find the fraction which is mid-way between $3 / 8$ and $1 / 2$. 5. In $\frac{4}{5}=\frac{4+9}{5+?}$, what is the missing number? - Multiply and divide simple fractions Multiplicative inverse: Two numbers whose product is 1 are multiplicative inverses of one another. For example, $\frac{3}{5}$ and $\frac{5}{3}$ are multiplicative inverses of one another because $\frac{3}{5} \times \frac{5}{3}=\frac{5}{3} \times \frac{3}{5}=1$. - Examples: 1. Use the model to find the product. $\frac{1}{2} \times \frac{1}{4}=$ \qquad 2. Calculate five-eighths of fourteen dollars. 3. Ahmad has 2 pieces of papers. He wants to split them into $\frac{1}{4}$ pieces. How many pieces will he get in total? 4. Aqil has 15 shirts in his closet. If 2 out of every 3 of these shirts are striped, how many unstriped shirts does he have in his closet? 5. Khairi and Zul sold candies to raise money for their debate team. Zul sold 3 times as much candies as Khairi did. If Khairi sold $\frac{1}{2}$ of a box of candies, how many boxes of candies did Zul sell? 6. $\frac{1}{3}$ of a number is 4 . What is the number?	

1.3.6 Ordering of Integers, Decimals \& Fractions	i) Solve problems involving comparisons and ordering of integers, decimals and fractions in a range of different contexts including those involving different units of measurement, using the symbols $=, \neq,<, \leq,>, \geq$. [SPN21 MATHEMATICS Y7 Pages 27-33, 57-62]	7. Which would you rather have, $\frac{5}{8}$ of 160 g chocolate bar or $\frac{3}{4}$ of 120 g chocolate bar? - Examples: 1. Without working out the answers, tell True or False: (a) $0.3-0.125>1 / 5$ (b) $3 / 4+1 / 2>1$ (c) $62 \div 0.89$ is less than 62 . (d) $19 / 8-8 / 19<2$ 2. Rewrite the following numbers in ascending order: $6.1,5.444,6 \frac{4}{5},-6.1,5.4, \frac{39}{8},-2$ 3. A supermarket found that $\frac{5}{9}$ of the customers bought vegetables and $\frac{5}{8}$ of the customers bought fruits. Which purchase was made by a greater fraction of customers? 4. Fill in the missing values in decimal form. 5. Which sign makes the statement true? 5.9 \qquad 5.90×10^{1} \square \square \square 6. Select $<,>$ or $=$ to make the statement true. 1000 centimeters \qquad 10 meters 7. What is the missing fraction in the box? $2.07=2+$ \square 8. Circle the fraction that represents the largest amount: $\frac{15}{16}, \quad \frac{16}{17}, \quad \frac{19}{20}, \quad \frac{18}{19}$

		9. Julie and Sharil each bought a bag of grapes. The bag of grapes Julie bought weighed $\frac{4}{10} \mathrm{~kg}$ while Sharil's bag of grapes was 0.5 kg. Whose bags of grapes weigh more?

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.4 RATIO \& PROPORTION	Students should be able to:		2
1.4.1 Ratio \& Proportion	a) Understand and recognise proportionality and the relationship between ratio and proportion. [SPN21 MATHEMATICS Y7 Pages 119-120 and Y8 Pages 62-65]	- Ratio is a comparison of two things or more. Ratios can be written in several different ways: as a fraction, using the word "to", or with a colon. Ways to write ratio of squares to triangles: Example: What is the ratio of lollipops to cookies?	

1.4.2 Ratios in their simplest forms.	c) Express ratios of two or three quantities in their simplest form. [SPN21 MATHEMATICS Y7 Pages 119-126]	4) Are these ratios equivalent? 4 bags to 8 purses 5 bags to 10 purses 5) Are $1: 2$ and $5: 10$ in proportion? Use cross multiplication, $\begin{gathered} \frac{1}{2}=\frac{5}{10} \\ \frac{1}{2} \times 2 \times 10=\frac{5}{10} \times 2 \times 10 \\ 10=10 \end{gathered}$ Hence $\mathbf{1 : 2}$ is proportional to $\mathbf{5 : 1 0}$ since their cross multiplication is equal. 6) Are $4: 3$ and $16: 13$ in proportion? Use cross multiplication, $\begin{gathered} \frac{4}{3}=\frac{16}{13} \\ \frac{4}{3} \times 3 \times 13=\frac{16}{13} \times 3 \times 13 \\ 52 \neq 48 \end{gathered}$ Hence 4:3 is not proportional to $\mathbf{6 : \mathbf { 1 3 }}$ since their cross multiplication is not equal. 7) Do the ratios $\frac{3}{2}$ and $\frac{9}{6}$ form a proportion? 8) $3: 5$ and $12: 20$ are equal ratios? - To simplify a ratio means to reduce it to its smallest, simplest, terms. Examples: 1) Simplify the ratio $25: 40$

1.4.3 Divide a quantity into parts of a given ratio. 1.4.4 Solve ratio \& proportion problems	d) Divide a quantity into two or three parts in a given ratio. [SPN21 MATHEMATICS Y7 Pages 119-126] e) Solve simple ratio and proportion problems using informal methods, including those involving scales on maps or diagrams.	2) Simplify the ratio $12: 6: 60$ 3) Write each of the following ratios in the simplest form a) 5 minutes to 10 minutes b) 21 days to 1 week c) 8 months to 2 years d) 20 g to 2 kg - Divide a quantity into two or three parts in a given ratio. Examples: 1) Divide 60 into two parts in the ratio $2: 3$ 2) Divide $\$ 50$ in the ratio $3: 2$ 3) Divide 81 m in the ratio $2: 7$ 4) Divide 200 sweets into 3 parts in the ratio $3: 6: 1$ 5) Divide $\$ 120$ between Morgan and Jack in the ratio $3: 5$. 6) Salmah gave $\$ 100$ to her daughter Ain and asked her to spend three parts and save two parts of the total amount. How much did Ain spend and how much did she save? 7) Divide $\$ 260$ among Aishah, Buzz and Charlie in the ratio $1 / 2: 1 / 3: 1 / 4$. 8) Two numbers are in the ratio $5: 7$. If the difference between the numbers is 24 , find the numbers. - Examples: 1) A football team played a total of 27 matches and the ratio of wins to losses was $7: 2$. How many games did the team win and how many did it lose? 2) A survey was conducted to find out about students' favourite colours. In 7J, 10 students said their favourite colour was blue while 5 students preferred red. Meanwhile, in 7C, 12 students said their favourite colour was blue while 10 students preferred red. Which class has a higher ratio of students who preferred blue to students who preferred red? 3) 2 apples cost $\$ 2.20$. Find the cost of 5 apples.

1.4.5 Rate	f) Understand rate as a comparison, or ratio, of two measurements with different units. [SPN21 MATHEMATICS Y7 Pages 130-133]	We can write this situation as $1: 30$ or $\frac{1}{30}$ or 1 to 30 . Note: The first number always refers to the length of the drawing on paper and the second number refers to the length of the real-life object. - Examples: 1) The length of a car is drawn to scale of $1: 40$. The length of the car on paper is 12 cm long. Calculate the actual length of the car. 1 cm on paper $=40 \mathrm{~cm}$ in real life 2 cm on paper $=2 \times 40=80 \mathrm{~cm}$ in real life (double of 1 cm) 12 cm on paper $=6 \times 80 \mathrm{~cm}=480 \mathrm{~cm}$ in real life (6 times 2 cm) 2) On a certain map, 5 cm represents 20 km . What is the scale of the map? 3) Copy and complete the table below for a scale drawing in which the scale is 4 cm to 1 m - Rate is how much of something per 1 unit of something else. Examples: a. $\mathbf{1 0 0 0}$ cars pass by in 4 hours. $\begin{aligned} 1000 \text { cars } & =4 \text { hours } \\ \frac{1000}{4} \quad & =1 \text { hour } \end{aligned}$ The unit rate is $\mathbf{2 5 0}$ cars per hour. b. 100 packets of Nasi Katok were eaten by 50 people. The unit rate is 2 packets of Nasi Katok per person. c. The car can go 1000 km on 50 liters of fuel. The unit rate is 20

		km per liter. d. There are 120 students and 4 teachers. The unit rate is 30 students per teacher. e. In the last 4 weeks Sam earned $\$ 4000$. The unit rate is $\$ 1000$ per week. - Examples: 1. The table shows the parking rates at a car park. (a) Calculate the total fare, in dollars, for the journey of (i) 8 km , (ii) 24 km . (b) Find the length of the journey for which the fare was $\$ 16$. 2. Last week I paid $\$ 5.30$ for 2 kg of durians. This week I paid $\$ 11.10$ for 3 kg of durians. What was the difference in the price per kg ? 3. Hajah Salmah wants to buy a bottle of cooking oil. Which cooking oil is of better value, the 1 kg bottle or 500 g bottle? Explain.	

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.5 PERCENTAGES	Students should be able to:		2
1.5.1 Percentages \& their equivalent fractions \& decimals	a) Understand percentage and recognise the equivalence of percentages, fractions and decimals. Express percentages as decimals or fractions.	- Recall percentages, fractions and decimals facts such as: $\begin{array}{llc} \frac{1}{4}=25 \% \text { or } 0.25 & \frac{1}{2}=50 \% \text { or } 0.5 & \frac{3}{4}=75 \% \text { or } 0.75 \\ 1=100 \% \text { or } 1.0 & \frac{9}{10}=90 \% \text { or } 0.9 & 0.37=37 \% \text { or } \frac{37}{100} \\ 67 \%=0.67 \text { or } \frac{67}{100} & & \end{array}$ - Find the equivalence of percentages, fractions and decimals Examples: 1) Express 37% as a fraction and a decimal 37% is equivalent to $\frac{37}{100}=0.37$ 2) Express 70% as a fraction in its lowest terms. 70% is equivalent to $\frac{70}{100}=\frac{7}{10}$ 3) Express $\frac{2}{5}$ as a percentage $\frac{2}{5}=\frac{4}{10}=\frac{40}{100}=40 \%$ 4) Convert $\frac{1}{8}$ into a decimal $\frac{1}{4}=0.25 \text { so } \frac{1}{8}=0.25 \div 2=0.125$ 5) Fill in the equivalent decimal, fraction \& percentage in each of the following	

1.5.2 Expressing one quantity as a percentage of another.	b) Express one quantity as a percentage of another and use this in problems to compare simple proportions. [SPN21 MATHEMATICS Y7 Pages 98-105]	- Find simple equivalent fractions: Example: What are the two fractions equivalent to $\frac{4}{5}$ $\frac{8}{10}, \frac{12}{15}$ - Examples: 1. There are 100 flowers in the basket. 40 of them are yellow. (i) What fraction of the flowers is yellow? (ii) What percentage of the flowers is yellow? 2. There are 400 students in a school. 240 of them are boys. Express the number of boys as a percentage of all students in the school? 3. Express 500 g as a percentage of 2.5 kg . 4. A survey was conducted to learn people's chocolate preferences: Chocolate preferences a) What fraction of the respondents preferred dark chocolate? b) What percentage of the respondents preferred milk chocolate? 5. A serving of ice cream contains 5000 calories. 200 calories come from fat. What percent of the total calories come from fat? 6. In a box of 8 doughnuts, two have red sprinkles. How many percent of the doughnuts have red sprinkles? 7. What percent of 1 hour is 15 minutes?

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.6 SEEING, EXPRESSING \& RECORDING ALGEBRAIC RELATIONSHIPS (Link to 1.2.6)	Students should be able to:		2
1.6.1 Unknowns \& variables.	a) Understand the concepts of an unknown and a variable. Understand the vocabulary of algebra: expression; equation; formula; term; constant; linear; evaluate; simplify; substitute; solve; factorise; expand. Recognise and use algebraic conventions when representing unknown numbers or variables in expressions and equations $\begin{aligned} & \text { (e.g. } 3 n, a-7,2 n+4, a_{2}, 3(n \\ & +4), 4 x-1=7,2(a+3)= \end{aligned}$ 14). [SPN21 MATHEMATICS Y7 Pages 145-173, 177-178]	Algebra is based on the concept of unknown values called variable. A variable is a letter representing some unknown; an unknown quantity or expression whose value can change. A constant is a value or number that never changes in an expression it's constantly the same. A term is a part of an expression separated by + or - signs. A coefficient is a numerical or constant quantity placed before and multiplying the variable in an algebraic expression. An expression is a combination of variables, numbers, and/or operations that represents a mathematical relationship. It does NOT have an equal sign. An equation is a mathematical statement that two or more expressions are equal. It must have an equal sign.	

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
 TRANSFORMING ALGEBRAIC RELATIONSHIPS (Link to 1.2.6)	Students should be able to:		2
1.7.1 Equivalence of algebraic expressions by collecting like terms 1.7.2 Equivalence of algebraic expressions by	a) Show equivalence (or not) of algebraic expressions by collecting like terms (integer coefficients). [SPN21 MATHEMATICS Y7 Pages 154-163] b) Show equivalence (or not) of algebraic expressions by multiplying a constant over	- Examples: 1) Group/pair work Use cubes, algebra discs or draw diagrams to represent the algebraic expressions. Then simplify the expressions. 2) Identify an equivalent expression. i. 5 c a) $c+c+c$ b) $c+c+c+c$ c) $\mathrm{c}+\mathrm{c}+\mathrm{c}+\mathrm{c}+\mathrm{c}$ d) $c+c+c+c+c+c$ iii. $\quad 2 \mathrm{t}+\mathrm{t}$ a) $t+t$ b) $t+2 t$ c) $2 t+2 t$ d) $t+t+2$ ii. $\quad p+p+0$ a) 0 b) p c) $2 p$ d) $3 p$ iv. $\quad 2 f+3 z$ a) $f+z$ b) $f+f+z+z+z$ c) $2(f+g)$ d) $3(f+g)$ - Examples: 1) Identify an equivalent expression of $4(j+1)$	

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.8 SOLVING LINEAR EQUATIONS (Link to 1.2.6)	Students should be able to:		2
1.8.1 Evaluating simple algebraic linear expressions	a) Evaluate simple algebraic linear expressions arising from practical contexts, including mathematical and scientific formulae, by substitution (positive integers). [SPN21 MATHEMATICS Y7 Pages	- Examples: 1. Given that $P=2 l+2 w$, where P is the Perimeter of a rectangle, l is its length and w is its width. Find the Perimeter of a rectangle when $l=9 \mathrm{~cm}$ and $w=5 \mathrm{~cm}$. 2. Given the formula $m=v \times d$, where m is mass, v is volume and d is density. Find the volume in g , given $m=60 \mathrm{~g}$ and $d=2 \mathrm{~g} / \mathrm{cm}^{3}$. 3. Mrs Zariah spent $\$ C$ to buy x calculators and y pencils. A calculator	

| |
| :--- | :--- |
| |
| |
| |

in whole units (such as $2 \mathrm{~cm}, 5 \mathrm{~cm}$, etc.) Draw all the possible rectangles.
4. Ahmad has $\$ x$. Abu has $\$ 5$ more than Ahmad. Razak has twice as much as Abu. Together they have $\$ 175$. What is the value of x ?
5. Ahmad had 40 kg of rice. He gave some rice to his uncle. He had 27 kg of rice left. How many kilograms of rice did he give to his uncle?
6. Sofian has some money. Siti has $\$ 20$ more than two times Sofian's money. If Siti has $\$ 68$, how much money does Sofian have?
7. My weight is xg . Hassan's weight is 30 kg . If our total weight is 55 kg , what is my weight?
8. The cost of a fan is $\$ 8 \mathrm{t}$. A lamp costs $\frac{1}{2}$ more than that of a fan. What is the total cost of the fan and the lamp?

- Number Sense Quizzes (No calculators!)

1) Consecutive whole numbers are numbers next to one another. For example, 34 and 35 are consecutive numbers, and their sum is 69 . Using your mental computation methods, find the two consecutive numbers that have a sum of:
a)
(b) 201
(c) 567
2) Using your mental computation methods, find the three consecutive numbers that have a sum of:
a) 6 (b) 24 (c) 117

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
1.9 PROPERTIES OF SEQUENCES	Students should be able to:		
1.9.1 Triangle numbers	a) Understand and recognise the sequence of triangle numbers. [SPN21 MATHEMATICS Y7 Page $91]$	• The sequence of triangle numbers: This sequence comes from a pattern of dots that form a triangle.	

1.9.2 Linear patterns \& integers sequence.	b) Describe and continue linear growing patterns and sequences of integers. [SPN21 MATHEMATICS Y7 Pages 85-96]	Diagram (n) No. of dots Sequence rule (n-1)+n 1 1 1 2 3 $1+2$ 3 6 $1+2+3$ 4 10 $1+2+3+4$ 5 15 $1+2+3+4+5$ 6 21 $1+2+3+4+5+6$ - A linear growing pattern/sequence is a pattern/a series of numbers that increases or decreases by a constant difference. - Examples: 1. State the rule of each of the following number patterns and write down the next two terms. a) $2,4,6$, \qquad , \qquad b) $1,4,9,16$, \qquad , __ c) $0,1,1,2,3,5$, \qquad , 2. Fill in the missing numbers. 8, \qquad \qquad $,-4,-8,-12$ 16,48, 24, \qquad \qquad , 108, 54 3. Write down the $7^{\text {th }}$ and $10^{\text {th }}$ terms of the number patterns. Use a calculator to check your answers.	

1.9.3 Generating terms of a sequence 1.9.4Generating sequences from practical context	c) Generate terms of a sequence given a simple rule (term-to-term and general term). [SPN21 MATHEMATICS Y7 Pages 85-96] d) Generate sequences from practical contexts and describe the general term using words, mapping diagrams and symbols. [SPN21 MATHEMATICS Y7 Pages 85-96]	a) $13,18,23,28, \ldots$ b) $200,140,80,20, \ldots$ - Examples: 1. Generate a number sequence using the rule "Add 3". Start at zero. 2. The numbers in the sequence $7,11,15,19,23, \ldots$ increase by four. The numbers in the sequence $1,10,19,28,37, \ldots$ increase by nine. The number 19 is in both sequences. If the two sequences are continued, what is the next number that is in BOTH the first and the second sequences? - Examples: 1) Look at the growing pattern below: House 1 House 2 House 3 a) What do you notice about these houses? b) What do you think the fourth house will look like? Show how it looks like. c) Describe House 5. Write the rule pattern and the fifth terms for i. Number of triangles ii. Number of rectangles iii. Total number of all the shapes d) How will House 20 look like? e) Describe House 100.

f) Which house has 12 triangles and 12 rectangles?
2) Study the pattern below.

Pattern 1

Pattern 2

Pattern 3
a) Draw Pattern 5.
b) Pattern $\mathbf{2}$ has 9 corners, how many corners will there be in Pattern 8?
c) Pattern \mathbf{X} has a total of 36 corners. Find \mathbf{X}.

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION									INSTRUCTION
1.10 RELATIONSHIPS \& GRAPHS	Students should be able to:										2
1.10.1 Expressing linear relationships algebraically, in tables \& graphically	a) Understand that linear relationships can be expressed in different ways: algebraically; in tables; graphically. [SPN21 MATHEMATICS Y7 Pages 246-252]	Examples: 1. Draw the Describe th 1 more rect Complete th Diagram no. No. of rectangle	dia ngl tabl 1 2	2 3	3 4	Di wor lank 4 5	5	6	m 3 of 7	Diagram 4 ctangle increase by 1 or add	

2. MEASUREMENT \& GEOMETRY (6 WEEKS)							
SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION					INSTRUCTION TIME
2.1 TIME, PERIMETER, AREA, \& VOLUME	Students should be able to:						2
2.1.1 Time	a) Read the time on analogue and digital clocks and solve problems involving units of time, including start times, end times and duration of events. Understand and use 12-hour clock and 24-hour clock notation. Solve problems involving timetables.	Examples: 1) Convert 1.3 hours to minutes. 2) Convert 150 minutes to hour. 3) Convert 3.30 pm into 24 -hour clock notation. 4) A movie starts at 6.45 pm . It lasts 2 hours and 35 minutes. What time will the movie finish? 5) It takes 1 h 5 min for Bob to travel from home to his office. If he wants to reach the office by $8.30 \mathrm{a} . \mathrm{m}$. what time should he leave his house? 6) These are the start and finish times of a DVD recorder: START 14:45 FINISH 17:25 For how long was the DVD recording? 7) An aeroplane takes off on Tuesday at 22:47. It lands on Wednesday at 07:05. How long in hours and minutes is the flight? 8) These are the times letters are collected from a post box.					

2.1.3 Perimeter \& Area of polygons 2.1.4 Circumference of a circle	c) Solve problems that involve calculating the perimeter and area of polygons that can be split into rectangles and triangles. Remark: Perimeter and area of composite figures made up of rectangles and triangles only. [SPN21 MATHEMATICS Y7 Pages 286-300] d) Understand and use correctly the vocabulary for parts of a circle: centre, radius, diameter, circumference, arc, chord, sector. [SPN21 MATHEMATICS Y7 Pages 301-302]	8. In the figure, D and E are squares and F is a right-angled triangle. The areas of D and E are $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$ respectively. What is the area of F ? - Examples: 1. Find the perimeter and area of the figure: 2. Find the area of the figure: - Give clear instructions on the use of the compasses, especially with regards to measuring the radius, and fixing the centre before drawing the circle. Guide students to draw a few circles as practice. - Label on the $1^{\text {st }}$ circle: circumference, centre, radius and diameter. - Label on the $2^{\text {nd }}$ circle: arcs (major arc and minor arc), sectors (major sector and minor sector). Shade the sectors in different shadings. Label on the $3^{\text {rd }}$ circle: chord, angle subtended at the centre by the

2.1.5 Nets of cuboids, triangular prisms, regular tetrahedra, square-based.	g) Identify and draw nets of cuboids, triangular prisms, regular tetrahedra, squarebased pyramids.	- Randomly provide 2 - 4 circular discs to each pair of students. - Give instructions to guide investigation: - Measure the radius of each circle. Record your measurement. - Wind the string around the disc and measure the length of string which goes one full circle around the disc. Record your measurement in the column called circumference. - Complete the column diameter. - Use your calculator to compute the ratio C/d and record it in the table. - What do you observe in the results under the column? How are C and d related? a) Consolidate all students' findings and introduce this ratio as π (pi). Guide students to derive the formula: $C=\pi \times d$, where $d=$ diameter. b) Explain that $C=2 \pi r$, where $r=$ radius, since $d=2 r$. c) Apply the relationship to find the circumferences of two more circles. - Solve problems involving circumference, diameter and radii of circles. Examples: 1. The diameter of a circle is 14 cm . What is the length of its radius? 2. Calculate the perimeter of a circle with radius 5 cm . Give your answers in terms of π. 3. The circumference of a circle is 44 cm . What is the length of its radius? [Take π as 3.142]. Give your answer to the nearest whole number. - Review nets of cuboids. - Use concrete models of cuboids, triangular prisms, regular tetrahedra, square-based pyramids and to help students visualise 3-dimensional figures and draw nets of these solids.

2.2.3 Translation	[SPN21 MATHEMATICS Y7 Pages 226-227] Rotate polygons on a coordinate grid (all four quadrants) after a rotation of 90° or 180° clockwise and anti-clockwise around one of its vertices. Remark: Describe a rotation fully in statement form is not included. [SPN21 MATHEMATICS Y8 Pages 258-267] d) Recognise and visualise 2D translations. Translate a polygon on a coordinate grid (all four quadrants). [SPN21 MATHEMATICS Y7 Pages 256-265]	- Examples: Rotate the shapes 90° and 180° clockwise/anti-clockwise about the point A. - Introduce the first idea of translation by shifting a piece on a chess board in a specified direction. Examples: 1) Shifting a queen 2 steps to the right 2) Shifting a pawn 1 step forward 3) Shifting a knight 3 steps to the left and 2 steps forward - Demonstrate the translation of a given figure drawn in a coordinate plane point (object point) by a specified number of steps horizontally and vertically in the coordinate plane. Label the image (image point) Examples: 1) Translate the Figure A by a shift of " $\mathbf{5}$ steps to the left and 2 steps up". Label the image as Figure B.

		2) Translate triangle $P Q R 6$ units to the left and 4 units up. Draw and label the image $P_{1} Q_{1} R_{1}$. 3) Translate kite TUVW 5 units down and 8 units to the left. Draw and label the image $T_{1} U_{1} V_{1} W_{1}$. Guide students to note the invariant properties (angles and sides) of an object and its image under a translation. Such properties will be used to check accuracy of images and will not be applied in problems.	

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION	INSTRUCTION TIME
2.3 PLANE \& SOLID SHAPES	Students should be able to:		2
2.3.1 Lines, angles, plane \& solid shapes.	a) Understand and use correctly the vocabulary, notation and labelling conventions for lines, angles, plane and solid shapes. [SPN21 MATHEMATICS Y7 Pages 204-223] b) Use a protractor to measure and draw angles, including reflex angles, to the nearest degree. [SPN21 MATHEMATICS Y7 Pages 204-211]	- Demonstrate rotation using a hand-held fan and discuss the need to use special units to measure the amount of turn of the edge of the fan about a fixed center (pivot). Protractor Hand-held fan - Show a protractor to illustrate that a half turn is measured as 180 degrees (denoted as 180°). Hence one complete rotation is measured as 360 degrees. - Discuss the sizes of angles associated with quarter-turn $\left(90^{\circ}\right)$, halfturn $\left(180^{\circ}\right)$, three quarter-turn $\left(270^{\circ}\right)$, and complete turn $\left(360^{\circ}\right)$. - Use the proper symbols in naming angles, e.g., $\angle A B C, \angle x$ and $A \hat{B} C$ and \square for right angle. - Review different types of angles: acute (less than 90°), right $\left(90^{\circ}\right)$, obtuse (more than 90° but less than 180°) and reflex (more than 180°).	

2.3.2 Properties of angles: angles on a straight line, angles around a point \& vertically opposite angles.	c) Solve problems involving angles on a straight line, angles around a point and vertically opposite angles. [SPN21 MATHEMATICS Y7 Pages 211-217]	Show relationship between an acute angle and its corresponding reflex angle (see diagram below). - Emphasise that the naming of a reflex angle must be preceded with the word 'reflex' as shown in the diagram below. - Explain the use of inner scale and the outer scale in reading an angle. Show how the protractor should be positioned so that accurate reading can be obtained. - Guide students to use the protractor to measure ready angles in degrees and to draw angles of specified magnitudes. Give sufficient practice to ensure all students are able to read the size of any angle. - Use the protractor or a corner of a rectangle (or the set-square) to determine if an angle is acute or obtuse. Use the straight edge to determine if an angle is a straight angle $\left(180^{\circ}\right)$, an obtuse or a reflex angle. - Introduce the meaning of two angles being complementary to one another if their sum $=90^{\circ}$. Use this property to find the other complementary angle of a given angle. - Similarly introduce the meaning of supplementary angles. Use this property to find the supplementary angle of a given angle. - Show a line with several angles meeting at a point and with a sum of 180 degrees. Introduce the term 'adjacent angles on a straight line'. Emphasise that a few angles which sum up 180° will meet at a point on a straight line. Use this property to find unknown angles on a	

		straight line. - Guide students to draw two intersecting lines and identify the pairs of vertically opposite angles. Guide them to discover that vertically opposite angles are equal by measuring these angles with a protractor. - Give further practice on problems related to the above properties of angles. - Investigation: Provide each group with a set of cut-outs of angles with preset sizes totaling 360°, e.g. $\left(150^{\circ}, 120^{\circ}, 90^{\circ}\right),\left(100^{\circ}, 90^{\circ}, 70^{\circ}, 60^{\circ}, 40^{\circ}\right)$ [Please see the sample set shown below.] Sample set: $\left(100^{\circ}, 90^{\circ}, 70^{\circ}, 60^{\circ}, 40^{\circ}\right)$ Instruct students to: - measure and label the size of each angle	

2.3.3 Triangles.	d) Solve geometrical problems involving line, angle and symmetry properties of equilateral, isosceles and right-angled triangles, including finding unknown angles. Explain geometrical reasoning using diagrams and words. [SPN21 MATHEMATICS Y7 Pages 218-227]	- Explain the types of triangles: scalene, right-angled, isosceles and equilateral triangles. Guide students to identify types of triangles: - Oral quizzes: - 'I have 3 sides. I have two equal sides. What's my name?' - 'I have 3 sides. All my 3 angles are equal. What am I?' - Review that the sum of interior angles of a triangle and the angle property of exterior angles through a demonstration as follows: - Construct a random triangle PQR on a plain paper. Extend the side along RP at corner P (Diagram 1). - Duplicate the triangle PQR on a colour paper and cut up the three angles.(Diagram 2) - Arrange and paste cutout angles Q and R next to the corner P so that the three angles are adjacent angles on a straight line. (Diagram 3)

Shis shows that:

3. DATA ANALYSIS \& PROBABILITY (5 WEEKS)

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION			INSTRUCTION
3.1 DATA ANALYSIS	Students should be able to:				3
3.1.1 Types of data	a) Understand and use the vocabulary to describe different types of data: quantitative; categorical (qualitative); discrete; ungrouped and grouped; continuous.	Quantitative data		Qualitative data (categorical)	
		Information about quantities; information that can be measured and written down with numbers		Information about qualities; information that can't actually be measured	
		Examples: The amount of money in your wallet, your age, the age of your father's car etc.		Examples: The colour of the sky, the softness of the cat etc.	
		Type of data	Discrete data	Continuous data	
		Meaning	Has clear spaces between values	Falls on a continuous sequence	
		Nature	Countable	Measurable	
		Values	Can take only distinct or separate values (counted in whole numbers or integers)	Can take any value in some interval	

3.1.2 Pictograms
, Bar charts,
Pie charts,
Frequency
tables
b) Collect and organise data and construct:

- frequency tables for ungrouped and grouped discrete data.
- pictograms;
- bar charts/graphs for discrete data;
- pie charts for categorical data;

Read, analyse and interpret these diagrams and charts and draw simple conclusions from them.

SPN21 MATHEMATICS Y7 Pages 180-200, Y8 Pages 131-138]

Frequency Tables

Practical Activity:

- Collect a few sets of real data (e.g. height, age, favourite colour, etc.) using tally sheets and guide students to prepare frequency tables.
- Interpret the frequency tables to find answers to the set of data. Examples:
Which is the most popular food item?
How many more choose satay than choose laksa?

Pictograms

- A pictogram is a frequency table represented in repeated symbols or pictures. Each symbol/picture represents a number of the same item.
- Show a ready-made pictogram to explain the important features of pictograms: key to a picture, uniform picture size, horizontal axis for data and vertical axis for implied frequency (by the number of pictures) or either way, title of pictogram, etc.
- Interpret the pictogram and find answers to questions related to the data.

Example: The following pictograph shows how a group of students travelled to school one morning

		Car Key: represents 4 students a) How many students travelled to school by car? b) If the total number of students involved in the survey is 56 , how many symbols must be drawn in the pictogram for the students walking to school? - Guide students to construct a pictogram from a set of given data. - Data represented by a pictogram is easy to understand but half/fraction of a symbol/picture cannot usually be drawn accurately and so the frequency is represented approximately. Bar Charts/Graphs (Horizontal and Vertical bar charts/graphs) - A bar chart/graph is a statistical representation which uses bars to represent the number of units (frequencies) of the various items. - Show a ready-made bar chart to explain the important features of bar charts: uniform column width, horizontal axis for data and vertical axis for frequency or either way, title of bar chart, etc. - Interpret the bar chart and find answers to questions related to the data. Example: The bar graph shows the number of storybooks read by students in a school. Express the number of students who read only 3 storybooks as a fraction of the total number of students in the school. (Give your answer in its simplest form).	

		angle of each sector is proportional to the frequency of the category it represents. Pie chart can be used to compare proportions between the various sectors and between a sector and the whole. - A pie chart is more convenient to represent/illustrate data when there is a big difference between the frequencies or there are only a few categories. Examples: 1) The pie chart shows the number of chiffon cakes of each flavour sold on a particular day. Copy and complete the corresponding table. Number of chiffon cakes sold 2) Most of the students in a class kept pets. Of the 160 pets they had, there were 72 fishes, 40 hamsters, 28 cats, 12 terrapins and 8 rabbits. Draw a pie chart to illustrate the above information. Solution: Angle of sector for each type of pet is needed to draw the pie chart.	

		C, and (iv) the angle of the sector D and the amount of money received by Daniel. Solution: The angle of a sector is proportional to the amount represented by the sector. (i) Let the total amount of money be T. It is represented by the whole circle with angle at centre $=360^{\circ}$. For $A, \$ 60$ is represented by a sector of 150°. Therefore, $\frac{60}{T}=\frac{150^{\circ}}{360^{\circ}}$. Hence, $T=144$. The total amount of money is $\$ 144$. (ii) For B , the amount of money received, x is represented by a sector of 120°. Therefore, $\frac{x}{144}=\frac{120^{\circ}}{360^{\circ}}$. [or alternatively, $\frac{x}{60}=\frac{120^{\circ}}{150^{\circ}}$] Hence, $x=48$. The amount of money received by Bella is $\$ 48$. (iii) For C , the amount of money received, $\$ 24$ is represented by a sector of y^{0}. Therefore, $\frac{24}{144}=\frac{y^{0}}{360^{\circ}}$. [or alternatively, $\frac{24}{60}=\frac{y^{0}}{150^{\circ}}$] Hence, $y=60$. The angle of the sector C is 60°. (iv) For D, the amount of money received, k is represented by a sector of z^{0}. k can be found by adding up the money received by the siblings, $k+60+48+24=144$	

Suggested themes: "Favourite TV programmes", "My favourite subjects-Boys versus Girls", "How students spend the recess time", etc.

They will follow three stages in their investigation:

1) Planning
\checkmark What data will be required in the investigation?
\checkmark What is the most suitable method(s) for data collection?
\checkmark Design the survey questionnaire or interview guide.
\checkmark What statistical representation will be used? (bar charts, pie charts, histograms, mean, etc.)
2) Data collection and processing
\checkmark Carry out data collection.
\checkmark Analyse the data.
3) Prepare statistical representation.
\checkmark Report and presentation
\checkmark Provide support to each group in terms of materials.

SUB-TOPICS	LEARNING OBJECTIVES	LEARNING EXPERIENCE/EXEMPLIFICATION		INSTRUCTION TIME
3.2 PROBABILITY	Students should be able to:			2
3.2.1 Introductio n to Probability	a) Recognise real-life examples of probability. Understand the concept of probability and use the vocabulary of probability when describing events: certain, more likely, equally likely, less likely, or impossible.	Probability is the chance or pos happen. Vocabulary of probability Certain: will definitely happen. Impossible: will not happen. Possible: could happen. may or may not actually happen	sibility that an event (something) will Event The Sun will rise and set every day. People will breathe air. Growing wings, going to the Sun, or breathing underwater. Visiting another country or getting a new pet.	

3.2.4 Theoretical probability \& Experimen tal probability	d) Understand that the theoretical probability of a single event is the ratio of the number of favourable outcomes to the total number of possible outcomes where all outcomes are equally likely. Identify and justify probabilities of a single event based on equally likely outcomes in simple contexts.	b)Event A: toss a coin and get a "head". Event B: toss a coin and get a "tail" c)A bag contains 2 yellow balls and 3 blue balls. A ball is drawn from it. Event A: You get a yellow ball. Event B: You get a blue ball. d) Event A: roll a die and get a "2". Event B: roll a die and get an even number. e)One student is selected as the class monitor. Event A: Jamal is selected as the monitor. Event B: Peter is selected as the monitor. In everyday life, there are events that cannot happen at the same time. We called these Mutually Exclusive Events. 2. Can you write down two examples of mutually exclusive events? 3. Since mutually exclusive events cannot happen together, the probability that both events will happen together is equal to \qquad . 4. How about the probability that either one event will happen? Probability of any event A occurring, $\mathrm{P}(\mathrm{A})=\frac{\text { Number of outcomes favourable to } A}{\text { Total number of possible outcomes }}$ Examples: 1) A bag contains 2 yellow balls and 3 blue balls. A ball is drawn from it. Find the probability of getting a blue ball. $\mathrm{P}(\text { blue ball })=\frac{\text { number of blue balls }}{\text { total number of balls }}=\frac{3}{5}$ 2) A fair die is rolled. Find the probability of getting an even number. $P($ even number $)=\frac{3}{6}=\frac{1}{2}$	

		The table shows the experimental probability. It is the probability obtained from the result of an experiment. It is what actually happens instead of what is expected to obtain. Experimental probability of obtaining tails is $\frac{7}{10}=\frac{70}{100}=70 \%$ Now, Aini continues to toss the same coin for 50 total tosses. The results are shown below. Now, the experimental probability of obtaining tails is $\frac{23}{50}=\frac{46}{100}=46 \%$ The probability is still a bit lower than expected, but as more experiments are conducted; the experimental probability becomes closer to the theoretical probability (i.e. 50\%). - Examples: 1) The probability of students bringing calculators during a Mathematics exam is higher than normal school days. 2) The probability of people staying indoor on a rainy day is greater than the probability of people going out. 3) In a lucky draw event where for every purchase of $\$ 100$ you will entitle one lucky draw cupon. The more lucky draw cupons you get the higher the chances you will get a prize in the lucky draw. 4) The probability of full attendance girls in a class is $\frac{1}{2}$. This means that the number of girls in the class is equal to the number of boys. 5) The probability of full attendance girls in a class is $\frac{3}{10}$. This means that the number of girls in the class is less than the number of boys. In other words, 30% of the students in the class are girls, that is 70% of them are boys.	

| | f)Understand the difference between
 theoretical and experimental
 probabilities and compare in simple
 contexts. | Compare theoretical and experimental probabilities using tossing a
 fair coin examples above to understand the difference between both
 probabilities. |
| :--- | :--- | :--- | :--- |

